Quantitative Aptitude Quiz For SBI PO/Clerk Prelims
Directions (1-5): In each of these questions, two equations are given. You have to solve these equations and find out the values of x and y and give answer
Q1. I. 4x + 7y = 209
II. 12x - 14y = – 38
II. 12x-14y=-38
or 6x-7y=-19
Adding I and II we get
10x = 190
⇒ x = 19
∴ 7y = 114 + 19
⇒ y = 19
x = y
Q2. I. 17x² + 48x = 9
II. 13y² = 32y – 12
Q3. I. 16x² + 20x + 6 = 0
II. 10y² + 38y + 24 = 0
Q4. I. 8x² + 6x = 5
II. 12y² – 22y + 8 = 0
Q5. I. 18x² + 18x + 4 = 0
II. 12y² + 29y + 14 = 0
Directions (6-10): In each of the following questions two equations are given. You have to solve the equations and Give answer —
Q6. I. 9x² – 36x + 35 = 0
II. 2y² – 15y – 17 = 0
⇒ 9x² - 21x – 15x + 35 = 0
⇒ 3x (3x – 7) -5 (3x – 7) = 0
⇒ (3x- 7) (3x – 5) = 0
⇒ x = 5/3, 7/3
II. 2y² – 15y – 17 = 0
⇒ 2y² - 17y + 2y – 17 = 0
⇒ (y + 1) (2y – 17) = 0
⇒ y= -1, 17/2
No relation
Q7. I. 2x² – 7x + 3 = 0
II. 2y² – 7y + 6 = 0
⇒ 2x² - 6x – x +3 = 0
⇒ (x – 3) (2x – 1) = 0
⇒ x = 3, 1/2,
II. 2y² - 7y +6 = 0
⇒ 2y² - 4y – 3y + 6 =0
⇒ (y – 2) (2y – 3) = 0
⇒ y = 2, 3/2
No relation
Q8. I. 4x² + 16x + 15 = 0
II. 2y² + 3y + 1 = 0
⇒ 4x² + 10x + 6x + 15 = 0
⇒ 2x (2x + 5) + 3 (2x + 5) = 0
⇒ (2x + 5) (2x + 3) = 0
⇒ x= -5/2, -3/2
II. 2y² + 3y + 1 = 0
⇒ 2y² + 2y + y + 1 = 0
⇒ (y + 1) (2y + 1) = 0
⇒ y = -1, -1/2
y > x
Q9. I. 9x² – 45x + 56 = 0
II. 4y² – 17y + 18 = 0
⇒ 9x² - 24x – 21x + 56 = 0
⇒ 3x (3x – 8) – 7 (3x – 8) = 0
⇒ (3x – 8) (3x – 7) = 0
⇒ x = 8/3, 7/3
II. 4y² - 17y + 18 = 0
⇒ 4y² - 8y – 9y + 18 = 0
⇒ (y – 2) (4y – 9) = 0
⇒ y = 2, 9/4
Q10. I. 2x² + 11x + 14 = 0
II. 2y² + 15y + 28 = 0
⇒ 2x² + 4x + 7x + 14= 0
⇒ (x + 2) (2x + 7) = 0
⇒ x = -2, -7/2
II. 2y² + 15y + 28= 0
⇒ 2y² + 8y + 7y + 28 = 0
⇒ (y + 4) (2y + 7) = 0
⇒ y = -4, -7/2
⇒ x≥ y
Directions (11 - 15): In the following Questions, two equations I and II are given. You have to solve both the equations and Give answer
Q11. I. x² – 7x + 6 = 0
II. 2y² – 8y + 6 = 0
x² – 6x– x + 6 = 0
(x – 6) (x – 1) = 0
x= 1, 6
II. 2y² – 8y + 6 = 0
⇒ y² – 4y + 3 = 0
⇒ y² – 3y – y + 3 = 0
⇒ (y – 1) (y – 3) = 0
⇒ y = 1, 3
No relation
Q12. I. 3x² + 13x – 16 = 0
II. y² – 5y + 4 = 0
⇒ 3x² + 16x – 3x – 16 = 0
⇒ (3x + 16) (x – 1) = 0
⇒ x=1, -16/3
II. y² – 5y + 4 = 0
⇒ y² – 4y – y + 4 = 0
⇒ (y – 4) (y – 1) = 0
⇒ y = 4, 1
y ≥ x
Q13. I. y² + 17y + 72= 0
II. x² + 11x + 30 = 0
⇒ y² + 8y + 9y + 72 = 0
⇒ (y + 8) (y + 9) = 0
⇒ y = –8, –9
II. x² + 11x + 30 = 0
⇒ x² + 5x + 6x + 30 = 0
⇒ (x + 5) (x + 6) = 0
⇒ x = –5, –6
x > y
Q14. I. x + 3y = 8
II. 2x +y = 6
II. 2x + y = 6
Multiplying equation (ii) by 2 and then substracting (ii) from (i) we get
x = 2, y = 2
Q15. I. 2x² – 9x + 10 = 0
II. 3y² – 14y + 16 = 0
⇒ 2x² – 4x – 5x + 10 = 0
⇒ 2x (x – 2) – 5 (x – 2) = 0
⇒ (x – 2) (2x – 5) = 0
x=2, 5/2
II. 3y² – 14y + 16 = 0
⇒ 3y² – 6y – 8y + 10 = 0
⇒ 3y (y – 2) – 8 (y – 2) = 0
⇒ (y – 2) (3y – 8) = 0
⇒ y = 2, 8/3
No relation